Anatomical mechanism of spontaneous recovery in regions caudal to thoracic spinal cord injury lesions in rats

نویسندگان

  • Lu-sheng Li
  • Hao Yu
  • Raynald Raynald
  • Xiao-dong Wang
  • Guang-hui Dai
  • Hong-bin Cheng
  • Xue-bin Liu
  • Yi-hua An
چکیده

BACKGROUND The nerve fibre circuits around a lesion play a major role in the spontaneous recovery process after spinal cord hemisection in rats. The aim of the present study was to answer the following question: in the re-control process, do all spinal cord nerves below the lesion site participate, or do the spinal cord nerves of only one vertebral segment have a role in repair? METHODS First we made a T7 spinal cord hemisection in 50 rats. Eight weeks later, they were divided into three groups based on distinct second operations at T7: ipsilateral hemisection operation, contralateral hemisection, or transection. We then tested recovery of hindlimbs for another eight weeks. The first step was to confirm the lesion had role or not in the spontaneous recovery process. Secondly, we performed T7 spinal cord hemisections in 125 rats. Eight weeks later, we performed a second single hemisection on the ipsilateral side at T8-T12 and then tested hindlimb recovery for another six weeks. RESULTS In the first part, the Basso, Beattie, Bresnahan (BBB) scores and the electrophysiology tests of both hindlimbs weren't significantly different after the second hemisection of the ipsilateral side. In the second part, the closer the second hemisection was to T12, the more substantial the resulting impairment in BBB score tests and prolonged latency periods. CONCLUSIONS The nerve regeneration from the lesion area after hemisection has no effect on spontaneous recovery of the spinal cord. Repair is carried out by all vertebrae caudal and ipsilateral to the lesion, with T12 being most important.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Sexuality in Functional Recovery after Spinal Cord Injury in rats

  Background: Spinal cord injury (SCI) is a major clinical condition and research is commonly done to find suitable treatment options. However, there are some degrees of spontaneous recovery after SCI and gender is said to be a contributing factor in recovery, but this is controversial. This study was done to compare the effects of sexual dimorphism on spontaneous recovery after spinal cord inj...

متن کامل

Allometric growth rate of the spinal cord in relation to the vertebral column during prenatal life in male and female goats (Capra hircus)

Total and regional allometric growth rates and termination sites of the spinal cord related to the respective vertebra were studied in 36 goat fetuses, from the Ahvaz slaughterhouse. These specimens were assigned to 3 groups, group 1 (CRL 10-20 cm), group 2 (CRL 21-30 cm), and group 3 (CRL 31-40 cm), each consisting of 6 male and 6 female fetuses. Observations in all 3 groups revealed that alth...

متن کامل

Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury.

Although it is believed that little recovery occurs after adult mammalian spinal cord injury, in fact significant spontaneous functional improvement commonly occurs after spinal cord injury in humans. To investigate potential mechanisms underlying spontaneous recovery, lesions of defined components of the corticospinal motor pathway were made in adult rats in the rostral cervical spinal cord or...

متن کامل

Functional recovery assessment of spinal cord contusion model in male rats without therapeutic interventions

Introduction: Spinal cord injury (SCI) is one of the most serious clinical diseases, which not only affects the patient's physical and mental status, but its effects will be spread to family and community. After severe spinal cord injury, astrocytes of the central nervous system (CNS) become reactive astrocytes, and play the main role of glial scar formation. The scar is a major obstacle to r...

متن کامل

Thoracic Rat Spinal Cord Contusion Injury Induces Remote Spinal Gliogenesis but Not Neurogenesis or Gliogenesis in the Brain

After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017